Openness of Momentum Maps and Persistence of Extremal Relative Equilibria

نویسندگان

  • JAMES MONTALDI
  • TADASHI TOKIEDA
چکیده

We prove that for every proper Hamiltonian action of a Lie group G in finite dimensions the momentum map is locally G-open relative to its image (i.e. images of G-invariant open sets are open). As an application we deduce that in a Hamiltonian system with continuous Hamiltonian symmetries, extremal relative equilibria persist for every perturbation of the value of the momentum map, provided the isotropy subgroup of this value is compact. We also demonstrate how this persistence result applies to an example of ellipsoidal figures of rotating fluid, and provide an example with plane point vortices which shows how the compactness assumption is related to persistence. Mathematics Subject Classification: 53D20, 37J15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence and Stability of Relative Equilibria

We consider relative equilibria in symmetric Hamiltonian systems, and their persistence or bifurcation as the momentum is varied. In particular, we extend a classical result about persistence of relative equilibria from values of the momentum map that are regular for the coadjoint action, to arbitrary values, provided that either (i) the relative equilibrium is at a local extremum of the reduce...

متن کامل

Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation∗

This paper studies the destabilizing effects of dissipation on families of relative equilibria in Hamiltonian systems which are non-extremal constraint critical points in the energy-Casimir or the energy-momentum methods. The dissipation is allowed to destroy the conservation law associated with the symmetry group or Casimirs, as long as the family of relative equilibria stays on an invariant m...

متن کامل

Relative periodic points of symplectic maps: persistence and bifurcations

In this paper we study symplectic maps with a continuous symmetry group arising by periodic forcing of symmetric Hamiltonian systems. By Noether’s Theorem, for each continuous symmetry the symplectic map has a conserved momentum. We study the persistence of relative periodic points of the symplectic map when momentum is varied and also treat subharmonic persistence and relative subharmonic bifu...

متن کامل

Families of Relative Equilibria in Hamiltonian Systems with Dissipation

In this note the influence of dissipation on families of relative equilibria in Hamiltonian systems will be considered. Relative equilibria can be described as critical points of an appropriate functional. This characterisation can be used to give sufficient conditions such that in finite dimensional systems with dissipation the extremal families of relative equilibria are stable under dissipat...

متن کامل

Stability of Poisson Equilibria and Hamiltonian Relative Equilibria by Energy Methods

We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum Methods. Using a topological generalisation of Lyapunov’s result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002